WB Board Class 12 Mathematics – Integration (SN Dey) Solutions
All solutions verified and handwritten-style explanations prepared by The Math Fellow
Explore complete step-by-step solutions of the Integration chapter from the Chhaya Mathematics (SN Dey) book. Each problem is solved carefully — showing every step, formula, and reasoning — just as explained in a live classroom.
This collection includes Indefinite Integration (Very Short Answer Type Questions/2 Marks) questions with algebraic, trigonometric, exponential, and logarithmic forms — all neatly formatted and watermark-protected with myqpaper.in for authenticity.
💬 Have a question or alternate method? Share it in the comments below.
The Math Fellow reads every comment and answers common doubts personally.
❤️ If this helped, share it with your classmates — your support motivates more uploads like this.
💡 Tip: Best viewed on desktop for full math clarity. Page may take a moment to load — each step is rendered precisely for accuracy.
3. Using the definition of integration, find \(y\) in terms of \(x\).
3(i) \(\dfrac{dy}{dx}=3x^2+2\)
Given \(\dfrac{dy}{dx}=3x^2+2\). Integrate both sides:
\[
y=\int(3x^2+2)\,dx = 3\int x^2dx + 2\int dx
= 3\cdot\frac{x^3}{3} + 2x + C = x^3 + 2x + C.
\]
\(\boxed{y=x^3+2x+C}\)
3(ii) \(dy=(ax+b)dx\)
Integrate:
\[
y=\int (ax+b)dx = a\int xdx + b\int dx
= \tfrac{a}{2}x^2 + bx + C.
\]
\(\boxed{y=\tfrac{a}{2}x^2+bx+C}\)
3(iii) \(\dfrac{dy}{dx}=2\sin2x\)
Integrate:
\[
y=\int 2\sin2x\,dx = 2\left(-\tfrac{1}{2}\cos2x\right) + C = -\cos2x + C.
\]
\(\boxed{y=-\cos2x+C}\)
3(iv) \(\dfrac{dy}{dx}=\sqrt{x},\; \text{given } y(4)=3\)
Write \(\sqrt{x}=x^{1/2}\). Integrate:
\[
y=\int x^{1/2}dx = \tfrac{2}{3}x^{3/2} + C.
\]
Use condition \(y(4)=3\):
\[
3 = \tfrac{2}{3}\cdot 4^{3/2} + C = \tfrac{16}{3} + C \Rightarrow C = -\tfrac{7}{3}.
\]
So
\[
y=\tfrac{2}{3}x^{3/2} - \tfrac{7}{3}.
\]
\(\boxed{y=\tfrac{2}{3}x^{3/2}-\tfrac{7}{3}}\)
4. Integrate each function w.r.t. \(x\).
4(i) \(\displaystyle \int x^{2/3}\,dx\)
\(\int x^{n}dx = \dfrac{x^{n+1}}{n+1}+C\). So
\(\int x^{2/3}dx = \dfrac{x^{5/3}}{5/3} + C = \dfrac{3}{5}x^{5/3} + C.\)
\(\boxed{\tfrac{3}{5}x^{5/3}+C}\)
4(ii) \(\displaystyle \int \dfrac{2}{\sqrt[4]{x^3}}\,dx\)
\(\dfrac{2}{\sqrt[4]{x^3}} = 2x^{-3/4}\).
\[
\int 2x^{-3/4}dx = 2\cdot \frac{x^{1/4}}{1/4} + C = 8x^{1/4} + C = 8\sqrt[4]{x} + C.
\]
\(\boxed{8\sqrt[4]{x}+C}\)
4(iii) \(\displaystyle \int (x^4-2x^2+5)\,dx\)
Integrate termwise:
\[
\tfrac{x^5}{5} - \tfrac{2x^3}{3} + 5x + C.
\]
\(\boxed{\tfrac{x^5}{5}-\tfrac{2x^3}{3}+5x+C}\)
4(iv) \(\displaystyle \int\Big(x-\dfrac{2}{x}\Big)^3 dx\)
Expand:
\[
\Big(x-\tfrac{2}{x}\Big)^3 = x^3 -6x + \tfrac{12}{x} - \tfrac{8}{x^3}.
\]
Integrate:
\[
\tfrac{x^4}{4} - 3x^2 + 12\ln|x| + 4x^{-2} + C.
\]
\(\boxed{\tfrac{x^4}{4}-3x^2+12\ln|x|+\tfrac{4}{x^2}+C}\)
4(v) \(\displaystyle \int(x+3)(x^2-5)\,dx\)
Multiply: \((x+3)(x^2-5)=x^3+3x^2-5x-15\).
Integrate:
\[
\tfrac{x^4}{4}+x^3-\tfrac{5x^2}{2}-15x + C.
\]
\(\boxed{\tfrac{x^4}{4}+x^3-\tfrac{5x^2}{2}-15x+C}\)
4(vi) \(\displaystyle \int \dfrac{1}{\sqrt{x}}\Big(\sqrt{x}+\dfrac{1}{\sqrt{x}}\Big)^2 dx\)
Expand: \((\sqrt{x}+\tfrac{1}{\sqrt{x}})^2 = x + 2 + \tfrac{1}{x}\).
Multiply by \(x^{-1/2}\): \(x^{1/2}+2x^{-1/2}+x^{-3/2}\).
Integrate:
\[
\tfrac{2}{3}x^{3/2} + 4\sqrt{x} - 2x^{-1/2} + C.
\]
\(\boxed{\tfrac{2}{3}x^{3/2}+4\sqrt{x}-\dfrac{2}{\sqrt{x}}+C}\)
5. Evaluate the following integrals.
5(i) \(\displaystyle \int e^{3\log x}\,dx\)
\(e^{3\ln x}=x^3\). So \(\int x^3 dx = \tfrac{x^4}{4} + C.\)
\(\boxed{\tfrac{x^4}{4}+C}\)
5(ii) \(\displaystyle \int \dfrac{e^{5x}-2e^{3x}+3}{e^x}\,dx\)
Divide: \(=e^{4x}-2e^{2x}+3e^{-x}\).
Integrate: \(\tfrac{e^{4x}}{4}-e^{2x}-3e^{-x}+C.\)
\(\boxed{\tfrac{e^{4x}}{4}-e^{2x}-3e^{-x}+C}\)
5(iii) \(\displaystyle \int \dfrac{e^{5x}+e^{3x}}{e^x+e^{-x}}\,dx\)
Simplify: \(\dfrac{e^{3x}(e^{2x}+1)}{e^{-x}(e^{2x}+1)}=e^{4x}.\)
So integral \(=\tfrac{e^{4x}}{4}+C.\)
\(\boxed{\tfrac{e^{4x}}{4}+C}\)
5(iv) \(\displaystyle \int (e^{2\log x}-2e^{-3\log x})\,dx\)
\(e^{2\ln x}=x^2,\; e^{-3\ln x}=x^{-3}.\) So integrand \(=x^2-2x^{-3}\).
Integrate: \(\tfrac{x^3}{3}+x^{-2}+C.\)
\(\boxed{\tfrac{x^3}{3}+\dfrac{1}{x^2}+C}\)
5(v) \(\displaystyle \int e^{-4x}\,dx\)
\(\int e^{-4x}dx = -\tfrac{1}{4}e^{-4x} + C.\)
\(\boxed{-\tfrac{1}{4}e^{-4x}+C}\)
6. Integrate.
6(i) \(\displaystyle \int 5^{2x} dx\)
\(5^{2x}=e^{2x\ln5}\). So \(\int e^{2x\ln5}dx = \dfrac{5^{2x}}{2\ln5} + C.\)
\(\boxed{\dfrac{5^{2x}}{2\ln5}+C}\)
6(ii) \(\displaystyle \int (x^4+4^x)dx\)
\(\int x^4dx=\tfrac{x^5}{5},\; \int 4^x dx=\dfrac{4^x}{\ln4}.\)
So \(\tfrac{x^5}{5}+\dfrac{4^x}{\ln4}+C.\)
\(\boxed{\tfrac{x^5}{5}+\dfrac{4^x}{\ln4}+C}\)
6(iii) \(\displaystyle \int (e^{x\log a}+e^{a\log x})dx\)
\(e^{x\log a}=a^x,\; e^{a\log x}=x^a\).
Integrate: \(\dfrac{a^x}{\ln a} + \dfrac{x^{a+1}}{a+1} + C.\)
\(\boxed{\dfrac{a^x}{\ln a}+\dfrac{x^{a+1}}{a+1}+C}\)
7. Evaluate the following integrals (trigonometric).
7(i) \(\displaystyle \int \sin^2 2x\,dx\)
\(\sin^2 t = \tfrac{1-\cos2t}{2}\).
\(\sin^2 2x=\tfrac{1-\cos4x}{2}\).
\[
\int \sin^2 2x\,dx = \tfrac{x}{2} - \tfrac{\sin4x}{8} + C.
\]
\(\boxed{\tfrac{x}{2}-\tfrac{\sin4x}{8}+C}\)
7(ii) \(\displaystyle \int \dfrac{2\tan x}{1+\tan^2x}\,dx\)
\(1+\tan^2x = \sec^2x\). So integrand \(= \dfrac{2\tan x}{\sec^2x} = 2\sin x\cos x = \sin2x\).
\[
\int \sin2x\,dx = -\tfrac{\cos2x}{2} + C.
\]
\(\boxed{-\tfrac{\cos2x}{2}+C}\)
7(iii) \(\displaystyle \int \sec x(\sec x+\tan x)\,dx\)
\(\sec x(\sec x+\tan x)=\sec^2x+\sec x\tan x\).
\[
\int = \tan x + \sec x + C.
\]
\(\boxed{\tan x + \sec x + C}\)
7(iv) \(\displaystyle \int \csc x(\csc x-\cot x)\,dx\)
\(\csc x(\csc x-\cot x)=\csc^2x-\csc x\cot x\).
\[
\int = -\cot x + \csc x + C.
\]
\(\boxed{-\cot x+\csc x + C}\)
7(v) \(\displaystyle \int \cos x^\circ\,dx\)
Convert degrees: \(x^\circ = \dfrac{\pi x}{180}\). Let \(k=\dfrac{\pi}{180}\).
\[
\int \cos(kx)\,dx = \frac{\sin(kx)}{k} + C
\Rightarrow \frac{180}{\pi}\sin x^\circ + C.
\]
\(\boxed{\dfrac{180}{\pi}\sin x^\circ + C}\)
7(vi) \(\displaystyle \int \cot^2\theta\,d\theta\)
\(\cot^2\theta=\csc^2\theta-1\).
\[
\int = -\cot\theta - \theta + C.
\]
\(\boxed{-\cot\theta-\theta + C}\)
7(vii) \(\displaystyle \int \cos^2\theta\,d\theta\)
\(\cos^2\theta=\tfrac{1+\cos2\theta}{2}\).
\[
\int = \tfrac{\theta}{2} + \tfrac{\sin2\theta}{4} + C.
\]
\(\boxed{\tfrac{\theta}{2}+\tfrac{\sin2\theta}{4}+C}\)
7(viii) \(\displaystyle \int \dfrac{1+\tan^2x}{1+\cot^2x}\,dx\)
\(1+\tan^2x=\sec^2x,\;1+\cot^2x=\csc^2x\).
So integrand \(=\dfrac{\sec^2x}{\csc^2x}=\tan^2x\).
\[
\int \tan^2x\,dx = \tan x - x + C.
\]
\(\boxed{\tan x - x + C}\)
7(ix) \(\displaystyle \int \dfrac{\sec x + 2\cot^2x + \cos^2x}{\cos x}\,dx\)
Simplify:
\[
\frac{\sec x + 2\cot^2x + \cos^2x}{\cos x}
= \sec^2x + 2\cot x\csc x + \cos x.
\]
Integrate termwise:
\[
\tan x - 2\csc x + \sin x + C.
\]
\(\boxed{\tan x - 2\csc x + \sin x + C}\)
7(x) \(\displaystyle \int \dfrac{\sec^2x}{\csc^2x}\,dx\)
\(\dfrac{\sec^2x}{\csc^2x}=\tan^2x\). So
\[
\int \tan^2x\,dx = \tan x - x + C.
\]
\(\boxed{\tan x - x + C}\)
8. If \(\dfrac{dy}{dx}=2x^2-3\) at any point \((x,y)\) on a curve, find the family of curves.
8. Integrate
\[
y=\int(2x^2-3)dx = \tfrac{2}{3}x^3 - 3x + C.
\]
\(\boxed{y=\tfrac{2}{3}x^3 - 3x + C}\)
